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In this paper we critically evaluate the dajsicai least-fixedpoint approach towards Äurstve 
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1. Introduction 

The classical stack impltR«ntat ion of rtcursiva programs do«s not aluaya giva 

results that correspond to our naive intuitive expectations. For inetanc«, on« 
•ight   expect   the prograe 

pul <» e-FU) 

over, say, the natural numbers, to be identical to the progra» 

Pfui <— e. 

eince   for  any nunber  y,   0'g-g.  5lei far Ig.   the program 

F(«»  <-. if F(KU8 thtn 8 «Is« 6 

would be expected to gieid the zero function. Since the test FU)-8 ia 

irrelevant, nothing but 8 can be produced as an output. Houever, »tack 

isiplementat ions and thsi conventional theory of programs dictate that both of 

these programs be undefined for all inputs. Users of recursion are ao accustomed 

to this implementation that theg are no longer su-prised at thie unintuitive 

interpretation, and never stop to consider any alternaMve meanings of recureiva 
programs. 

A recursive program, such as those aoove. looks like an implicit functional 

equation relating the values nf the function variable F. Such an equation may in 

general have mang possibls so ution functions (/hc#^o<nrj) .Since thara ia no unique 

solution, the semantics o' recursive programs \t selected rather than implied. 

The classical s^ck Imp Ismentat ion yields ons solution, the Itast dtflntd Jlxtdpotnt 

of the program. As ue have seen above, the Hind selection of the laaat defined 

eolution It inadequate, because a recursive program ^ftan contains more 
information than this solution exhibiis. 

In this pat-- Mt suggest the selection of e different and more defined eolution, 

which always sxists and which contains an much information as possible. 

In Section II we discuss various possible approaches towards recureiva programe, 

in an attempt to characterize the "best" one. On the basis of this diecueeion we 

introduce our new optimal flx«dpoint approach in Section III, which If exemplified in 

Section IV. Various techniques for proving properties of optimal fixedpointe are 
i j preeented in Section V. 

\ 
Thie paper ie an Informal exposition of the optimal flxedpoint theory, flora 
formal   treatment  ie given in Hanna and Shamir  (1975]  and Shamir   (19761. 
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II. Recursive Programs and Their Fixedpuints 

Consider,    a«   a    typical    exaiple,    the   folloumg   recursive   program   PI    over    the 

natural   numbers   [see  note   (il): 

PI:     FU.g)   <—   if  K-0  then y else F <F («,y-l) .F («-Ly»). 

Any solution function to this prograe must satisfy the relations dictated bg the 

program, i.e., 

(a) FI0,y)>y  for all  y,  and 

(b) F(«.y) . F(F(«.y-l), F(K-l.y))  for all  K-0 and all  y. 

Let us analyze uhat functions satisfy these two condtions. 

The main part of this program is the functional 

f IF]: if  «-a then  y tlit  F (F ««.y-l I .F (K-1 ty») , 

in which the symbol F is considereo as a function vcriable Given any partial 

function Mw,y) , the result of substituting f for F yields a neu partial 

function, denoted by ftf). For example, if we substitute the function 

f(x,y) ■ y 

for       F{x,y)   .   we obtain  the  function 

r(f](x.y)   -  1/ x-e Mm  y W«   f(f(x.y-l).    f(x-l,y)) 

- if x-e Mm y else f (y-l.y) 

Thus, the function flx.yl hat the interetting property that f U.yl-r If) (K, g) , 

that is, f is a solution function to the functional equation FU.y)-rTF) (x, y) . 

Since f does not change under the application of f . it it said to be a fixtdpoint 

of the given recursive program. 

An entirely different function which is a fixedpoint of tlie program is: 

glx.y) - max(x,yt . 

■ 
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Subut i tut ing    g    for    F     in    rtF)   ,  ut obttint 

rig] u.y)  . if ..e then \j am maximaxiM.y-l) ,max{n-l,\i))  . 

Bg  th« dtfinltion of  max,   this can ot •nt.olifitd to: 

r[g) (w.g!   - »/ K-9 then g */jf w«t(«.g-l,««-l,g) 

- if M-0 rA#n maxlx.g) Wj«inax(M,g) 
■ maxU.g)   . 

Thut g'x.y)   >• a fixtdpoint of  tha racuraiv« program PI. 

Vat  another  axanpla of a  fiKadpoint   ia  tha partial   function: 

/(x.g)   m if *.e thtn g tls* undtflntd . 

To ahow that thi« function ia indaad a fiwadpoint of our racuraiv« program, urn 

subatituta I \n f , treating undtflntd aa ang othar value. For thia purpoaa ua Make 

the general aasunption that all functions and predicates appearing In r are 

"natural lg extended." in the sensa that theg are undtflntd whenever at leaet one 

0?   their  argument a   is undtflntd.   Thua,  ua havei 

fU) (x.g)  - if x-e thtn g tht /(/(«,g-l)./(x-ltg)) 

• if K-8 then g eist 

IHf x-e thtn g-1 tilt undtflntd, /(x-l.g)) 

- if x-8 thtn g tht liundtflntd, /(x-l.g)) 
• if x-0 thtn g tlit 

if undtfintd-8 thtn /(x-i,g) tlst undtflntd 

- if x-8 thtn g ttst undtflntd . 

Theet »hree functione do not exhauat tha aet of all fixedpointi of the program. 

An example of an infinite claaa of fixedpolnta (indexed bg the function a over 
the natural number a) iat 

h (x.g) - if  x-8 thtn  g tlst  a(x). 

A function ha(x,g) can be ahown to be a fixedpoint of the prograe, provided that 

the function a(n) satisfies! 

a(n)*8 and a(a(n))-a(n) for all n > 8. 
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Example« of functions «atiBfying (hit condition are the identity function, any 

non-zero constant function, or the function uhich assignn tc any natura' number n 
its greatest  prime  factor. 

There are actually infinitely many more dietinct fixedpointe, the exact 

character nation of uhich is quite complicated. Ue can thus sea that tha eat of 

all ftxedpomts of the program may contain many functiont uith axtraaialu 

diversified behavior. All these functons can be considered as "eolutione" to th« 
equation represented by our  recursive program. 

Some of these fmedpomts are related by the "less defined or equal" relation. Ue 

say that a function rU.y) i« Uss defintd or tqual to s(K,y). or that sU.y) is mart 

defined or equal to r(«,y), if for any pair of natural numbers (a,b) , if r(a,b) ia 

defined than s(a.b) is also defined and has the same value; thus, aithar r(a,b) 

is undefined or else r (a,b)-s(a.b) . Note that a function r(*,y) may bo naithar 

"less defined or  equal"  nor   "more defined or  equal"   to sU.y). 

This relation introoui.es some structure into the set of all fixadoointa of a 

recursive program. A fixedpomt it called leau (defined) if it is lees defined or 

equa: to any other fixedpomt of the prog-am. Dually, a fixedpoint ia called 

greatest (defined)   if   it   is more defined or equal   to any other   fixedpoint. 

Among   the   fixedpoints of   the program PI   ,   the  fixedpoint: 

/(x,y)   m if H-e then y ehe undefined 

stands out. Since any fixedpoint of PI must be defined at y for x-0, it \% 

clearly  the program's   least   fixedpoint. 

Least fixedpoints of recursive programs have long attracted tha attention of 

computer  science  theoreticians  for   three main reasons   (see,   e.g.,  flanna   [1974))i 

(a) Any recursive program must have a (unique) least 

fixedpoint. Thus the least fixedpoint can be used to 

unambiguously define the "meaning" of recursive programa. 

(b) The classical stack implementation of racureiva program* 

computes  the   least  fixedpoint of  the program. 

(c) There are powerful methods for proving propertiaa of tha 

least   fixedpoint of programs. 

As a result, the least fixedpoint uas chosen as the "proper" solution of 

racureiva programs and other fixedpoints were absolutely discarded bk, researchers 

from further consideration. However, we have an important objactlon to thia 

choicai    it   contradicts   tha   intuitive concept   that   tha more defined  tha  aolutlon. 
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the more valuable it it. Indeed, there are «any recursive program for which the 

least fixedpomt doe« not contain all the useful information embedded in the 

program,    information  which   is  contained   in more  defined   fixedpoints. 

Cp-.«ider, for example, the «ol lowing recursive program P2 for solving th« 

discrete form of the Lapia.« equation, where F(x,y) maps pairs of integers in 

[0,188]   x   [8,180]   mto reals: 

P2t    MK,y»  - if x-e tktn 2y 

til»  if  K.100 thn 3y*388 

tin  i f  ,,-0 thtn 3« 

tlit  if y-iee thtn 4K-f288 

tilt   [F(K-l.y)*f (K,w.l)*f («♦l,w)4F(K,g*l))/4  . 

This recursi   e program has exactly  two fixedpointsi 

^.y i f Xa0 
3y*310 if «-100 

f(x,y) > ^ 3M if ya0 

4x4200 if 1,-100 

.undtflntd othsrwise 
and 

g(x,y)    •   3x4>2y4(K.y)/100     for     0<«,ySl00 

■ . 

There is no doubt that the second (totally defined) fixedpoint gCx.y) contains 

much more valuable information than the (mostly undefined) function Mm.y) 

Hrrfover, it is quite obvious that any programmer writing such a racurtive 

program unconsciously thinks about the function g(x.y) at the "solution" of the 

functional equation represented by the program. Thus, the arbitrary oalaction of 

the   least   fixed lomt  as the "proper solution"  seems a poor choice  in this case. 

This example might suggest a turn to ths other extreme - considering greatest 

fixedpoints rather than least ♦ i>edpoints. Unfortunately, there are many programs 

for which there is no such grsa'.est fixedpomt. as program PI shows: There ie no 

funct  on which   ie more defined  than all   the  fi^edpointe exhijited. 

A more modest approach could be the stlaction of a maximal flxtdpoint. I.e., a 

fixedpoint which is not lea* defined than any other fixedpoint. However, there 

are difficulties with this choice too. Uhile any recursive program has such a 

fixedpoint, it may have more than one. Thia is demonstratad by program PI, in 

which   the   functions   f(x,y),   g(x,y)   and   h^x.y)   are   all   examples   of   total,    and 

therefore maximal, fixedpoints of PI. This indicates that PI is an "underdef ined" 

recurs iv«! program - the relations stated between values of F for various 

arguments   (x,y)   are not  nufflciant  to uniquely deterr.me one defined valua of   tha 
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t^e   least   MH«dpoint  /U.yl   in  thia caee. ^penor   to 

Vn  art.nci«!   e.jmpie uh.ch   i I lu»!r«tM  thi« problt«   iti 

p3:     P(«I   <. f(m) 

Bv,r.    ,a,.    th,   .et   of   »he   natural   numter,.   Anw  ,3.,,,,    4ijnction 

nu«b«ra    ,5    rl«aMu   a    M««dpo.nt    of    th,,   ,.tr«^|w 

'oast    ti.eapo'nt    .♦    r3    l9    ,Ke 

ove--   the  natural 

unierdef.nej"    program.    The 

■^et.neä    fu.K:tioo.    and    eve  y    tota, 

ran  b.  con,  ^.d a .or,    va-.ap'e"  wlut.on 0«   th,. progra.. -edpo.nt 

III    Thr Optimal Kixpdpomi 

Thus    «ar    „e   hav«   ob.ected    to    th« 
(-•ataal   an^  nan »o 

a    neu    approach 

laaticai     ea^   •  -edpe-t   anf1   t>,e -   Proposed 
• ■«dpe  nt   apt-'oache«   to  r«cur«iv«  rrnnra«.     u 

'-e      -,£.   ,a      t   .e-u:   n.    approach',     it    comt-,nea     »hi 

^z:'""a — ——- - -edpent e t. al a:: 

e^.ded n ^ Drcgra„. ^ .hree W)M co;91d r
a

e:
a •fa;

fo;;;-- 

rcach   .,,      9elect   t .„ opo,nt   in   the   „ur,aerdefineci., -    -   - 

but   M.l     M tct   the   .ee red   totfl   ,1Btdpoin!   (Hh!Ch       « ^ 
f.Madro  ntl   m   .he ,ac,ace crogram ?2 

froB   »*•   'east 

In     order     to    .eveiop     t apP.oac.    .e    fir9t     ,ntrüaüce 

con,19t^l/.   THO  funct,cn9 „ ^ lo ^ _^f    f  |     ^no    o 

»or   any  argent   »or   wh-ch hcth are tftfinM.   Por  e-amp^.    let 

'  I-, f ■Cufi undefined 

e 

f.Uj  .V; f undefined 

0»h««ru 1 9e 

i »   .-8 

■ I  «-1 

otheru1se 

f,(M| 
> f «.a 

ndefined      otherwise 

Then   f,   and   t2   are   con^.tent.   a.   ar,   f|   and   ,3   .   HoHever(    ^   ^ ^ 

con„8tent.   „nee   for   »1   both  are  defied  and  have   d.fferent   va.ue,.   Note   that 
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no two of these »urctions are related by the "leee defined or equal" rtlati or. 

TMO consistent unctions can be regarded at being approximately the eame"i One 

function may be defined for several argument« at uhich the other ia undefined 

and vice versa; but the tuo functions cannot have contradictory defined valuee. 

They can be considered as tuo mcoeplete representations of the saee Knowledge, 

and one can define a function uhich is more defined than both of thee, thus being 

euperior   to both partial  representation«. 

Ue now defme a fi-edpomt I of a program P to be fxpconiiittnt if f ie coneletent 

with any other fiwedpomt g of P . That is, whenever f ie defined, say fix)-a 

then for any other fiwedpomt g . either gU) is undiflntd or g(x)>a . Thua the 

value a is implicitly defined by the program as the only possible defined 

eolution at K. Every recursive program has ai least one fnp-conaietent 

♦ i»edpoint, smce the least »ixedpomt of the program is lass defined then (and 

thus consistent with) any other fixedpoint of the program. Thua, the claaaical 

least   fixedpomt   is one of   these valuable  fmedpomts,   but only one of  many. 

The f «p-cons'^tent fixedpomts can be considered as the only genuine aolutione of 

a recursive program, emce only they contain uniquely determined values. Ue can 

thus concentrate our attention jn the subset cf fxp-conaistent fixedpointa rather 

than on the set of all fixedpointe of the proprem. In thie reatricted aet of 

aolutione we are naturally interested in maximally defined aolutiona of the 

program. Uhiie the greatest fixedpoint approach was not applicable to the eet of 

all   fixedpoints of   the program,  ue now fortunately have   [see note   (il)]i 

Basic Thtortm  Tht ut of all fxp-consisttnt ftxtdpointt always contains a (uniqu«) grtattst tltmtnt. 

Let us nou look at the set of fixedpoints from a different point of vleu. 

Previously, we discussed the possibility of selecting a maximal fixedpoint aa the 

"proper" solution of the program. This approach was no» applicable, since the 

program may have infinitely many such solutions with no information common to all 

of them, and no one of -ihich seems superior to the others. A natural way to 

resolve this problem is to find a fixedpoint which extracts thf unanimity among 

these maximal fixedpoints, thus being a satisfactory representative of all of 

them. Such a fixedpoint can be obtained by coneide'-ing the fixedpointa which are 

leso defined than all the maximal fixedpoints. For these fixedpointa ue again 
have   [see note   (i i illi 

Basic Thtortm: Tht stt of flxtdpoints which art Itss dtfintd than all maximal flxtdpoints of tht 
program, has a (uniqut) grtattst tltmtnt. 



Ue have thus arnved at two possible definitins of the "most deeirad tolution" 

of a recurtive program, the firet bg aecending at much as possibla fro« th« least 

fi»edpoint in the sat of f«p-coisietsnt fiMsdpoints, and th» second b« descending 
fro« the maximal fi«edpoints. 

!♦ is quite natural to relate these tuo "desired sciutions" of a racursiv* 

program. Surprisingly enough, these two fixedpoints alwags coincide, and ue call 

the fixedpomt thus def.ned the optimal fixedpom:  of «he program. 

By the definition of the optimal fixedpoi-.t. it follows that any rocuraiva 

program has a unique optimal fixedpoint. If the pror-am hae only one fixadpoint 

which is fxp-consistent. the optimal fixedpomt coincides with the clGsaical 

least f.xedpomt. On the other hand, if the program has a unique maximal 

fixedpoint. the optimal fixedpomt coincides with it. in all other cases, the 

optimal fixedpomt "floats" somewhere in the set of all fixedpoints. Ua 

illustrate this with the following d.agram (see Fig. 1). whtch summarizes aoma of 

the structural properties of the set of fixedpo.nts of recursive programs. In 

this diagram an upper section (Fig. TA) represents the set of all fixedpoints 

which are more defined or equal to f ; similarly, a lower s»ction (FiB. 2B) 

represents the set of all fixedpoints which are less defined or av,-'al to f . The 

"strategic position" of the optimal fixedpoint is clearly visible. 

IV. A Detailed Example 

Consider the following family of recursive programs over the natural rumberai 

Pui FU) <— if K-e then  i tl:t  j'FCFCx-D) . 

Ue shall investigate the structure of the set of fixedpoints for a few racuraive 

programs in this family, thus illustrating the behavior of the optimal fixedpoint 

approach in various situations. In order to systematically analyze the possible 

values of fixedpoints for some x-a . we evaluate the term F(a) by repeatedly 

substituting f(F] for various occurrences of F . Note that wa make use of the 

fact that F represents a fixedpoint of the program, but not necessarily the least 
fixedpoint or the optimal fixedpoint. 

Programs    P, o.l; 

F(x)  <.. if x-e thtn 8 «ist j-FCFU-DI  . 

Let ua analyze tha possibla values of    F    for succMiiva arguments    x t 

^M_a____aMaB 



The maximal fixedpoints 

The optimal fixedpoint 

The fxp - bonsistent fixedpoints 

The least fixedpoint 

Fig. 1.  The fixedpoints of a recursive program 

. Fig. 2A Fig. 2B 
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1 
F(8)   - if 8-8 thtn 8 tlit j-F(F(8-l)»  - 8 

F(l)   - i/ 1-8 then 8 tlit j-F(F(1-1)1 

-  j-F(F(8))   -  j-F(8)  -  j-8 - 8 

F(2)   - if 2-8 thtn 8 the j-F(F(2-l)) 

-  j-F(F(in   -  j-F(8!  •   j-8 - 8 

It  can be easily shoun   (by   induction)   that F(x)-8 for ang natural   number  K  .   Thua 
for  any   j   ,   the program P9iJ hae exactly one  fixedpoint« 

f(x)   - 8    for  ang natural  number    x  . 

It    is   clearly   the   program's   least   fixedpoint   as  uell   as   the   program's   optimal 
f i xedpoint. 

The behavior of the programs changes drastically when ua take I to be 1 rather 
than 8 . 

Program P,8i 

F(x)   <-. »/ x-e thtn 1 tilt 9-F(F(x-l)l   . 

The   value   of   F(8)    is   clearly   1   .   by   a   direct   application   of   tht   racuraiva 
definition.   For  x-1   ,   ttowever,   we get: 

F(l)   m if 1-8 thtn 1 tlst e-FfFd-D) 

- 8-F(F(8))   - 8-F(l)   . 

Ue nou have exactly two possible values for F(l) t 

F(l) - undtfintd   or F(l) - 9 . 

Selecting the first possibility, F(l) - undtfintd,  ue obtaint 

F(2)  - if 2-8 thtn 1 tlit 8,F(F(2-1)) 

- 8'F(F(1))  - 9-f (undtfintd) 

- 8" (»/ undtflntd-Q thtn 1 tlst 8'F(Flund</in«M))) 

• 9'undtfintd - undtfintd . 

Continuing   in  this way.   ue gat  the  fixedpoint» 

18 

■ J 



f (x) { 
if x-e 

undtfintd    o thiruI•• 

Houever.    if  ue  oslect   the Mcond potiibility.  F():-0 ,   ut havt to continu«   In  th« 
follouing uayt 

F(2)  - (/ 2-8 thtn 1 ilu e-F(F(2-l)) 

- e-FCFd))  - 0'C(8)  . e«! - 8. 

and «o on.     U«  thus gat  th« fixtdpolnt.' 

fi   i f  x-e 
g(x) 

(a otheruit«  . 

The functions fU) and gCx) jire clearly the only possible fixedpointe of th« 
program. Since f(x) is lees defined than gU) , f(x) is th« program's l««st 
fixedpoint while g(x)   ie the prograa'e optimal   fi^edpoint. 

Program P\tXi 

F(x)  <-- if x-e thtn 1 tlst F(F(x-l))  . 

The value of    F(0)     is necessarily    1  .    Evaluating    F(l)   ,  ue gett 

F(l)   - </ 1-0 thtn 1 tltt F(F(1-1)) 

- F(F(0))   - F(l)   . 

and thue any nature1 number (at uall as the value undtfintd) la a solution of thl« 

equation. If ue thooee Vil)»undtfintd , ua gat (exactly as in program P,-) th« 

f ixedpoint: 

f (x) ■t 
if    x-0 

ndtflntd   otheruisa . 

\ 

Since any other fixedpoint of Pi, must alto be 1 for x-0 , f{n)   it clearly th« 

program's least fixedpoint. 

Suppose ue choose F(l) - 0 . Ue *hen continue ulthi 

U 
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F(2)   - J/2-0 then 1 eist F(F(2-1)) 
- F(F(1))   - F(8)   - 1 

F(3)   - if 3-8 thtn 1  r/j» F(F(3-1)) 

- F(F(2))   - F(l)   - 8 

«tnd  so on.     Ue   thu« gat   the  fixedpoint: 

g(M) ■f    
18     if  K   is odd 

If  ue  take    F(l)-1   ,   ue obtain: 

F(2)   -   if 2-8 f^n 1 tlst F(F(2-1)) 

- F(F(1))   - F(l)   - 1  . 

and go on.  Ue thus obtain the fixedpointt 

h(»«) - I  for any natural number M . 

I f ue take FCU - 2 . ue get: 

F(2) - if 2-8 M#n 1 eist F(F(2-1)- 

- F(F(H)  ••;.?) 

and again ue may choote any dssirsd value for F(2) (Including the value 

undefined). 

It li possible to continue this detailed analysis and find infinitely many more 

fixedpoints of P,, . But in order to characterize the optimal fixedpoint of tMe 

program it suffices to consider just one more flxedpointi 

k(x) - K+l  fnr any natural number x . 

Since the optimal fixedpoint hould be less defined than both maximal fixedpointe 

h(x) and k(x) , it cannot be defined for any x>0 (for any euch x both h(K) and 

k(x) are defined and h(x)*k(x)) . Therefore the program's optimal fixedpoint 

coincides in this case uith the program's least fixedpoint f(x) . 

Program P^i 

F(x)  <— if x-8 tktn 1 else 2'F(F(x-l))  . 

1? 
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A« before,  all   fixedpointt of P,, are defined ae 1  for «-8 . For K-I ue have 

F(l)  - if l-e rA#n 1 rfn 2-F(F(e))  • 2-F(l)  . 

Ue   have   arrived  at   an  equation   (for   the  vaiue of  F(l)   )   which hae  exactly   two 
eolut ionsi 

Fill • undtflntd   or   F(l) - 0 . 

If ue decide to  take the value   F(l) . undtflntd.  ue aga n get  the flxedpolnt. 

if       M-0 
f(K) { Undtflntd    other wit« 

uhich   is  the program's   least  fixedpoint. 

Choosing  the other  possibilitg.   i.e.,    F(l)-8 ,  ue geti 

F(2)   - 2-F(F(l))   . 2-F(8)  - 2 , 

F(3)  . 2-F(F(2))  - 2'F(2) - 4 , 

and  f inalIgt 

F(4)   - 2'F(F(3))   - 2'F(4)   . 

The values for F(2) and F(3) uere ieplied. once ue choee F(l)-8 . But for F(4) 

ue again have to chooee betueen the tuo poeeible solutions of the aquation' 
namely, ' 

F(4I - undtflntd   or F(4)-8 . 

If ue chooee tU)-undtfliud  . then an argument ■Imilar to the one uaad pravloualu 

ehoue that for any M>4 , t{*)-undtflntd.  Thue ue have the fixedpolnt 

\ 

g(x) 

rl if x.8 
e If   K-l 
2 if   K-2 
4 If x.3 

* undtflntd   otheruise 

13 
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However,   if ue choose    F(4)-0  .   ue must rontinue as  follows 

F(5)  - 2-F(F(4))   . 2-F(e)   - 2 

F(G)   - 2-F(F(5))   - 2-F(2)   - 4 

F(7) - 2-F(F(G>) - 2-F(4) . 8, 

and so on. The periodic function thus obtained is defined for any r.atu-f.l number 
M as: 

/I if x-e 

Jo if *-W3il 
' \2 if )<-2+3il 
U if K-3*3i) 

h[*)  - V        if K-243iy i.0.1.2.... 
U        if K-3*3i) 

To sum up.  the recursive program Pli2 has exact lu three fixedpomta. each 

generated by a different selection of a solution to the above equations« 

f (*) 

l^n 

if x-e 

ndtßmd   otherwise 

if x-e 
if   K.l 

if ).-2 
if    K.3 

undtfintd    otherwise 

if x-e 

if X"l+3i 
if ><.24-3i 
if K-3*3i 

y i"8,i.2,... 

Note that f is less defined than g and g is less defined than h . The onlg 

maximal fixedpoint of this program is h . and thus It Is alao the program's 
opt ima I f ixedpoint. 

Program  P,^! 

F(x)  <-. if x-e thtn 1 tin 3-F(F(x.in  . 

Ae before,  F(e)-1   ,   and there are exactly two possible values for F(l)   i 
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F(l)  - undtflntd    or    F(l)   - 0 . 

The  first pottibilitu  leads to th« s«M  Isast  flusdpoint as befortt 

f («) { 
if     K-kJ 

undtflntd   otheruiss 

Th« second possibilitu Isade to: 

F(2) - 3-F(F(l)) . 3*F(9) • 3 . 

F(3) - 3-F(3) . 

Hsrs us have th« saee choice once more, 

F(3)  - undtflntd   or    F(3)  - 0 . 

If ue choose   t{2)»undtflntd   ue get the flKedpoint 

gU) 

rl if   v.0 
10 if   K-l 

,3 if K-2 
{undtflntd otherwise 

However,   i* ue choose    F(3)-0    ue continue uith 

F(4)   - 3-F(F(3))   - 3-F(0>  - 3 . 

F(5)   - 3'F(F(4H  - 3-FJ3)  - 0 . 

and so on,   and ue obtain the third possibis fixsdpointi 

h(x)   . V 0 i 
if  K-0 

if x-U2i}    i-0.1.2,... 
if M-24>2i] 

■v 

The optimal   flKedpoint of    P^    Is clsang   hW, 

Program P^t 

F(K)  <-. If x.0 thtn 1 tlst 4-F(F(x-l)) 

IB 

 ■ ■ - -       
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Thi« proora« bthavef «ntirely difftrantlu fro« tfw .«■•• con«id«r«d niravloutly. 
For M-0 , ue Btill get F(0)-1 . For H«1 , urn  g«ti 

F(l) - VF(F(8n - <» F(l) , 

and ue have the same choice as before, 

F(l) - undifintd    or F(l» - e . 

If we take F(l)-0 . ue continue withi 

F(2) - <**F(F(1)) . 4-F(8) - 4 , 

and   therefore: 

F(3)   - VHFCZ.)   - 4'F(4)   . IS^FCFO))   . 

Here   we   encounter   a  new  prob I «mi   Ue  do  get   an equation   for   the  value  of F(3) 

but   F(3)    it   contained   in   another   occurrence   of   F   on   the   righthand   eld« of   the 
equation.   Since  ue  do  not   knc-   the  global   behavior  of   thie  function,   m cannot 
simplU   solve   thi»  equation.   Houever.   based   ipon results   in  number   th«ory, It  can 

be    shoun    that    any    fixedpoint    of    this   prograa   must   be   undtflntd    for «3 
Therefore,   the program P,4 has exactly tuo  fixedpoints: 

f (x) L \und«ß 

if x-e 

undefintd    otherwise 

and 

1 if  x-e 
0 it   x-1 

g(x) «S,* if x-2 
[undtfintd    otherwise . 

Since f It less defined thar. g , f is the prograa*s least fixedpoint and g it the 
program's optimal (and maximal) fixedpoint. In contrast to programe P,-, P.- and 

Pij. the optimal fixedpoint ie not a total function, even though it ia etill more 

defined  than the  least  fixedpoint. 

Final Iy,  ue coneidar 

IG 
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Program P|9: 

TCM)   <— if K.e rA#n 1 #/;# S'FCFU-in  . 

For x.8 we clearly have FOI-l . For «-1 . m have, a« uaual. the choice batuaan 

FÜ)-unrfi/inrd and F(l)-8 . If ua take the aacond pombility. Ma gat F(2)-5 . Tha 

difficulty arises uhen considering the possible valüaa of F(3)   t 

F(3)  - 9-F(F(2))   - 5-F(5)  . 2S-F(F(4))  . 25-F(5-F(F(3)))   . 

This equation is too difficult to be imsnciiataly solved. 

Based upon considerations which are beyond tha acopa of thla paper, u« 

can find the following two flxadpoints of P|9i 

if x-e 

h^ 'Y 

a.-irt 

if «-1+211 

if *-2*2\)    i-8,1,2,... 

if x-e 

g2(K) 

if K-U3i"\ 

if )«-2+3i( 

i f K-S+SiJ 

i"8,1,2,... 

The optimal fixedpoint must be less defined than both of these two total (and 

therefore maximc-ji) f i xedpoints. so it can be defined only at arguments of tha 

form K-l+Gi and x-2+Bi . for i-8,1,2 However, the function thua obtained ia 

not a fixedpoint of the program (e.g.. try x-7). It can ba shown that tha onlg 

two fixedpointe of P|i5 which are less defined than thie function scat 

f (x) ■{ 
• f    M-8 

ndeflned    otherwise 

and 

hU) 

/i if x.8 
18 if x-1 
\5 if K-2 
[undtfined otherw i se 

i 
Tna function fix) is clearly the program's least fixedpoint. The fixedpoint hU) 

ia fxp-consistent. since all ita values are uniquely determined bg the equations. 

Sine« the optimal fixeJpoint must be either fix) or h(x) , «nd the more defined 

function h(x) is fxp-cRnaietent. h(x) is the program'a optimal fixedpoint. Note 

17 
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th« tlallarltu bituwn th« optimal fixtdpointt of P,, and Pli9 - both ar« dafinad 

only for K-8 , K-I and «-.? j in P,|4 thia || dua to tha lack of poaalbla 

f ixedpoi-ita,   uhila  in P,s  it   ia dua to thair Multiplicity. 

Ona could continua to chack all program! P^ jith j greater than 5 . Ho^avar. ua 

baiieve that the pr-ceding eKamplea sufficiently illustrata tha variaty of 
possible cases in tha new optimal fixadpoint approach. It ia aapac tally 
interesting to note that although the least flwadpoint of all programa Pi. ia tha 

same, tha sets of all fixedpoints, as well <« the optimal fixadpointa, of U.«aa 
programs differ mdoly. Ue summarize this situation in Fig. 3, Mt.ara ua exhioit 
the sets of fixedpoints of programs P,,, to P,)5 . The least fixadpoint of any auch 

program is represented by the louest dot, uhile tha optimal fixadpoint ia 
represented by  the dot  surrounded by a circle. 

In the examples considered so far, various techniques uara uaad to find tha 
correct value of the optimal fixedpoint. Some of these techniquaa ara aaal ly 
mechanizable uhile others require deep mathematical Knowledge. Unlika tha laaat 
fixadpoint of a recursive program, the optimal fixadpoint naad not be a 
computable function. Thus there cannot be a "complete" computation rule which 
always computes the optimal fixedpoint, but uc can still hope to find good 
computation techniques uhich ara applicable to large subeata of commonly uaad 
programa. The examples diacuaaad in this section give tha fla-or of a feu auch 
techniquee. 

V.   Proof Techniques 

In thia aection ue illustrate several techniques for proving propertiaa of 
optimal fixedpoints. Ue uish to shou that optimal fixedpoint f of a given 
recureive program P has some property Qtf) without actually computing tha 

fixedpoint. The property Q is a functirnal predicate, uhich may characteriza tha 
overall behavior of f . For example. QifJ can state that f ia • total function, 

or that f equals some given function g , or that f is monotonically incraaaing 
over  some ordered domain,  etc. 

Generally   speaking,   there  are   three elements   involvec    n  the  procese  of  proving 
propertiee of   fixedpointei   A  function f  ,  a domain 0 ,  and a deeired property Q 
Any one of  these three elements can be used as the basis for   induction. 

Tha    tuo    classical    methods    for    provinn   properties   of    leaet    flxedpolnte    uae 

induction  on   the   function  and  on   the domain.   In  the conputatlonaJ  induction  method 

V (deBakker   and  Scott   119691),   one   first   proves   the property  Q  over   0   for   a  very 
einple   function   ft,   and   than  eucceeeively  treats better  approximations   f, of   f   . 

18 
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In    Iht   structural   induction   method   (Burstall    (1969] I   one   use« 

elements  of   the domain 0,   leaving  f  and Q unchanged. 
Induction   ov«r    th« 

Uhile these two general methods, appropr lately modified, can alec be used to 

prove properties of the optimal «iKedpoint in some cases, ue suggeet a nmu 

induction method (called asstrtion 'nduction) which uses the property Q as tha basis 

for induction. Eve though this third type of induction has bean totally ignored 

in the leset fi*e (point approach, it turne out to be a very useful technique In 
the optimal   fixedpoint approach. 

Uhat we actually prove in the assertion induction m«thoä ■• that any fixedpoint f 

■j( the program belonging to some given subset S of partial functiona haa th« 

proparty Qrf) . The fact that the optimal f;*edpoir,t g possesses th« desired 

property is derived cither as a special case (if g t S ), or as a raault of eon« 

further argumentation (based on the definition of g as the greatest fixedpoint 
which   is   fno-consistent), 

Note that 6 may contain functions Mtvrh are not fixedpoints of the progra«. and 

theee furctions need not have the properly Q . The assertion induction method 

only shows that all functions in S which are fixedpointe of the progra« have 

property Q . The role of the subset S is to rule out certain unwanted fixedpointe 
which \io not have  the desired property Q . 

T*t AsstrtlOi Induction Mtthod 

Civent   A recursive progra« P :  F(x)  <-- f(F](x)   .  a property Q[n   ,   and a eubeet S 

Of   partial    functions. 

Coaii   To prove  that Q[f]  holds for any fixedpoint  f of P such that  tcS 

Method:   Find a sequence of predicates Q.tF]   .   i-8,1,2....   such thati 

(a) Qotf]   holds  for any  ffS . 

(b) If   Q.m    holds   for   some   fcS   and   flfJcS   ,    then   Q^tfCf]] 

holds. 

i 

(c)    For   any   fcS   .    if   Q,l1] holds   for   all    i   ,   then  Q{fl   also 

holds. 

Thia    method    can   be    justified   by the    following   argument!    By   part    (t),    any 

fixedpoint   fcS  haa proparty 0.(0   . By part   (b).   if a  function  fcS haa  prop«rty 



Q,(f)    .   and  f(f]cS  .   thtn flf]   hM pro^rty Q^.tftf)]   .  But   if  f   it •  flK.dpolnt. 

then   f-r [f]   ,0 rtflfl  .  and  I  has property QH| (f)   .  By  induction,   any  flxadpoint 

US  ha.   th.  properties Q.tf)   for   ,.8.1.2 Thus,   part   lei   iftpli..   that   f  ha. 

property Qlf]   .   Note   th.t  since   f   i. replaced by ftf)   in  th.   induction  .tap.   any 

f  uhich  ig not a fiK.dcomt of r  ,, not auarant..d to hav. all   tha propartia. Q( . 

Ua    Mlufrat.   this  «.thod with   th.   fol lowing r.cur.iv. prograa  ovar   tha  natural 
numbers: 

P*M     F(K)   <— if F(K*1.«>0 then F{n*l)*l til* 8 . 

The    least    fixedpomt   of   this   progra.   is   everyuhere   umUflntd.   Ua   would   like   to 

prove   that   the optioal   fi«edpoint of  this prograa  is the constant  function 

Mx)-9     for  any natural   nuwb.r    x  . 

Ue    first    prove    tuo   properties   of    the    fixedprints   of   P4   uhlch   enable    u.    to 
properly choose  the subset S of  partial   functions« 

(i)    For any flxedpoint f of P4 and for any natural nunkr x , 

ßx*I) is undtßntd if and only if ßx) Is undtfintd. 

To   shou   this,   assume  th.t   MH*11   is undtflntdt   then clearly rlfK«)   , if f(K+i)>8 

then   f(x*l)   the 8 cannot be defined.   Since  MHl-ftfll«!   .   rfM]   i. alao umUflntd. 

On   th.  other  hand,   if   f<x*l)   i, defined,   then r(f](x)   i. .I.o d.finad.   and  alnci 
f (x)-If) (x)   .   f(x)   is defined. 

(i i)    For any fixtdpolnt f of P4 and for any natural numler x , 
ßx*l)~0 if and only if flx)-0 . 

Thie can be shoun   in exact y the same uay as  in part   (i)  above. 

Tha.e tuo properti.s character iz. two possible fix.dpoint. of tha prugraa P4 i f 

uhich i. .v.ryuh.re und*fintd and g uhich i. .v.ryHh.r. z.ro. Our a in nou 1. to 

.hou that th. r.cursiv. program ha. no oth.r fix.dpoint.. and thar.fora uhi I. f 

..   the program's   Last  fix.dpoint.   g  I. th. program's optimal   fix.dpoint. 

Tha    abov.    tuo   prop.rti.s    imply   that   any   flxedpoint   of   P4    i.   aithar    totally 

dafmad or   totally undtfintd,   and that  for any total   fix.dpoint h  .   aithar h(x).0 

^ for   all   x  or   h(x),0  for  all   x  .   Thar.fora u. d.fin. S a.  tha  «at   of  all   total 
functions uhich ar. .v.ryuh.r. gr.atar than zero, and try to provo that P4 ha. n« 
fix.dpoint   in S  . 
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In order to acnleve this, u« (c-rmaMy define the predicate Q(tl to be alu jn 
"false". The sequence of intermediate predicates we use is: 

Q.ff)  is IruM If and onlg if  f(¥)>i  for all natural number 8       K    , 

Step a: By the dsfinition of S , any fcS is everywhere greater than 

zero,   and  therefore Ü9[f]   holds. 

Step b: Suppose Q^f) holds for some i and f«S • Then by definition, 

f()«)>i for all natural numbers w . Uiing thio property, ua 

can  simplify  the expression r[f]lx)   : 

flfH«!  - if f(x+l)>8 then f(«*l)+l tht 8 
-   f(x4l)>l. 

Since   f(»<*l)>i   .   us have rtfMK)>i*l   .   Therefore QM)[ftfJl 

also holds. 

Step r: Suppose that some total function fcS satisfies Q.tf] for t'l 

i . Then for any natural number K , fU)>i for all i , and 

this is clearly a contradiction. Therefore .my such f also 

satisfies Q(f)   uhich  is always "false". 

This completes the induction step, and the method thus guarantees that S does not 

contain any  fixedpoint  of P4  . 

Thus far ue have introduced the new assertion induction method. As mentioned 

above, the two classical proof methods can also be used to prove properties of 

the optimal fixedpoint. Ue show here an appropriately modified version of the 
structural    induction method. 

Tfie Structural Induction Method 

The structural induction method is intended to prove that a fixedpoint f of a 

recursive program P has some "pointwise" property QtfHx) for all x in tha domain 

D  .   The main   idea   is  to partition D  into subsets S8,S|,...   »   -h  that 

. 0- u s 
j-o 
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and to prove that Q[f](*) holds for all xcSj using induction ov»r th« IndtM I 

Thus, one has to shou that for any i , if Q(fUx) holds for all 

1-1 

xc U S 

j-e 

f   \ 

then Q[f](M) holds for all KCS,. 

This implication is usually proved bg freely replacing any occurrence of f by 

r[f] (since f is a fixedpoint) and applying the induction hypotheeis to tha 

resultant expression. This method can also be used to prove properties of optimal 

fixedpoints, but one usually has to apply some additional specifIc reasoning 

techniques, such as equation solving or case analysis of poeeible valuee. 

Ue illustrate this method uith the following program PS over the natural numbers: 

P5i F(K) «— if x-e then  8 tls« F(x-F(x)) . 

Ue  would   like  to prove  that   th^ optimal   fixedpoint  f of P5 satisfies: 

am (x) : f(x)-e 

for any natural number x . 

Ue partition the domain of natural numbers in the following uayi 

S9-iei  8}*111 Ig-121 ... 

The fact that Q[f](e) holds (i.e., f(8)-8 ) is a direct consaquance of the 
def ini t ion of P5 . 

i-1 
Aeeume tnat ue have already shown that Q(f] (x) holds for al I x c U Si 

J-e 

(i.e., for all 8sxsi-l ); we now prove that QtfHx) holds for all xcSj (i.a., for 

K*i ). Since f is a fixedpoint of PS and i>8 , we have: 

f(i) - f(i-f(i)) . 

Ue use case analysis in order to find all the possible valuee of f(i) 

One possible value of f(l) is clearly undtflntd.   In order to chack whether f(|) 
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has any possible defined value  assume that f(i).k for some natural number k 

Substituting this value into the definition of f(i) , ue get: 

k . MI) - fn-f(i)) . fd-k) . 

Ue consider   tuo possible cases: 

(a)  If k-8 . ue obtain th e requirement 

8 - Mil 

and this value is clearly consistent with our assumption 

that f(i)"k»8 . Thus zero is a rossible value of f(i) 

(b)  If k>8 , ue obtain the requirement that 

f(i-k) > 8 . 

but since i>8 and k>8 . i-k<i . and this contradicts uhat 

ue knou (in the induction hypothesis) about the optimal 
f ixedpoint: 

f(K)-8 for alI x , 8sx2i . 

Therefore   f(i)   cannot   have   the  value k   for   any  k>8 

Ue have  thus shoun that  the only  tuo possible values of  Mi)   are undtftntd and 8 . 

By    the   definition   of   the   optimal    fixedpoint.   ue   can   nou   deduce   that   f(i)-e 

Since   this  holds   for  any natural   number   i   .   the optimal   fixedpoint   ia everggh.re 
def ined as zero. 

VI.  Conclusion 

In this paper ue have presented the optimal fixedpoint approach touards recursive 

progra-ns. Uhile it is clearly appealing from a theoretical point of vieu, it has 

a draubeeh in practice: it may be either impossible or extremely hard to find the 

optimal fixedpoint of some recursive programs. Uhile ue cannot develop perfect 

implementations, ue can try (perhaps using heuristic techniques) to extract as 

much information from th« program as possible. Such an implementation ul II yield 

the optimal fi>edpoint for certain c,asses of recursive programs, it til 11 compute 

some intermediate fxp-consietent fixedpoint for other classes; and in the woret 

case uill yield the least fixedpoint of the program (as computed by the classical 

stack implementation). By insisting on finding a more informative solution of a 

recursive program  than  the   least   fixedpoint,   it   is natural   that   the efficiency of 
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computation     rule«     is     reduced    and     th» 
increased. 

complexiity    of    proof     techniques     is 

The   development   of   this  nsu  approach   it  .till   underwau.   both   in   its   theoretical 
and practical  aspects. 

Footnotes 

(i)   All   functions   in  this program map natural  numbsrs  into natural 
x-l   is  defined  to be 0  for  x-e 

(ii)   The  theorem   is proved  in Manna and Shamir   11975],   Theorem 3. 

nunberet   thus, 

<iii)   For  a more rigorous statement of   this result and  its proof  see Theorem 5   in 
Manna  and Sham.r   (1975]. 
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